Improving Destination Choice Modeling Using Location-Based Big Data

نویسندگان

  • Joseph Molloy
  • Rolf Moeckel
چکیده

Citizens are increasingly sharing their location and movements through‘check-ins’ on location based social networks (LBSNs). These services are collecting unprecedented amounts of big data that can be used to study how we travel and interact with our environment. This paper will present the development of a destination choice model for Ontario, Canada which uses data from Foursquare, the largest LBSN to model destination attractiveness. Models are estimated for leisure, visit and business long distance travel purposes separately. A methodology to collect, process and aggregate historical check-in counts has been developed, allowing the utility of each destination to be calculated based on the intensity of different activities performed at the destination. Destinations such as national parks and ski areas are very strong attractors of leisure trips, yet do not employ many people, and have few residents. Trip counts to such destinations are therefore poorly predicted by models based on population and employment. Traditionally, this has been remedied by extensive manual data collection. The integration of Foursquare data offers an alternative approach to solve this problem that has not been deeply explored until now.The Foursquare based destination choice model is evaluated against a traditional model that is estimated only with population and employment. The results demonstrate that data from LBSNs can be used to improve destination choice models, particularly for leisure travel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Hazard Based Model for Housing Location Based on Travel Distance to Work

Residential location choice modeling is one of the areas in transportation planning that attempts to examine households location search behavior incorporating their trade-offs between housing quality, prices or rents, distance to work and other key factors. This brings up the need to come up with methods to logically allocate credible choice alternatives for individuals.This article attempts to...

متن کامل

Accommodating Spatial Correlation across Choice Alternatives in Discrete Choice Models: an Application to Modeling Residential Location Choice Behavior

This paper presents a modeling methodology capable of accounting for spatial correlation across choice alternatives in discrete choice modeling applications. Many location choice (e.g., residential location, workplace location, destination location) modeling contexts involve choice sets where alternatives are spatially correlated with one another due to unobserved factors. In the presence of su...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Modeling pedestrians' interest in locations: A concept to improve simulations of pedestrian destination choice

Large environments that are designed for travel, leisure, and for everyday life – such as transport hubs, amusement parks, and shopping centers – feature different locations that are frequently visited by pedestrians. Each visit is evoked by one’s motivation to engage in some kind of activity at a certain location. By means of modeling the pedestrians’ interests in locations with the aid of com...

متن کامل

Bayesian networks for constrained location choice modeling using structural restrictions and model averaging

In this work, we propose a Bayesian network approach by using structural restrictions and a model averaging algorithm for modeling the location choice of discretionary activities. In a first stage, we delimit individuals’ location choice which is set by generating an ellipse that uses empirical detour factors and a home-work axis. The choice set is further refined by an individual’s space-time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017